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Introduction

With the increasing impact of genomics and related technolo-
gies on the drug-discovery process, the focus of interest in the
pharmaceutical industry has shifted over the past years from
individual targets to target families.[1] Considerable synergies
can be exploited if the knowledge gathered in individual proj-
ects on related target proteins is seen in the larger context of
the target family and organized in a way that supports easy
knowledge transfer to further members of the target family.
This reorganization in the drug-discovery process has basically
affected all functions involved.[2, 3] This includes medicinal
chemistry, which has put substantial effort into the develop-
ment of elaborate strategies for synthesizing so-called privi-
leged scaffolds[4] for all major target classes of interest. Com-
pound series built with/around such scaffolds are particularly
suited for providing inhibitors for the respective target family
and are thus preferentially screened whenever new inhibitors
for another target family member are to be identified.

One of the major target families that have attracted atten-
tion in recent years is protein kinases. The human genome is
estimated to contain about 520 protein kinases.[5] Since protein
kinases play a major role in crucial cellular events, such as
signal transduction processes, they provide feasible targets for
a number of different indications, the most important arguably
being oncology.[6, 7] The vast majority of efforts in drug devel-
opment have aimed for kinase inhibitors that target the ATP-
binding pocket of kinases, which represents a deep and
narrow cleft between the C- and N-terminal subdomains.[8]

Given that all protein kinases bind an ATP molecule in this
pocket, it is not surprising that initial hits often target related
kinases as well, and selectivity problems are often encountered
in such projects.[9, 10] Although essential recognition features,
which are highly conserved among protein kinase pockets are
often involved in inhibitor binding, the variety of chemical
scaffolds that appear suitable for yielding potent kinase inhibi-
tors is still surprisingly wide. One reason for this is that, de-
pending on the individual kinase, only part of the interactions

that the ATP molecule forms have to be mimicked by a potent
inhibitor. Secondly, the pronounced flexibility of kinase pock-
ets[11, 12] facilitates the identification of selective inhibitors, since
the (mostly unexpected) opening up of further subpockets
provides additional possibilities for strong interactions with the
protein. While intermolecular recognition processes clearly
take place in three-dimensional space, the expertise that me-
dicinal chemists have gathered over the years has given them
a fairly good sense of the features in molecular structures that
are important for kinase inhibition. Thus, even the 2D structure
of a given molecule allows for some estimate of its usefulness
in kinase inhibitor research. Accordingly, we tried to condense
some of this empirical knowledge about kinase inhibitors in a
computational prediction method. By using supervised-learn-
ing techniques, similarly complex classification problems have
been successfully addressed with 2D molecular descriptors in
the past. Most noteworthy are the pioneering studies of
Sadowski and Kubinyi[13] as well as those of Ajay et al. ,[14] who
trained different neural networks for the classification of drugs
and nondrugs (“druglikeness” filtering). More recently, Mana-
llack et al.[15] showed that neural networks along with BCUT-
parameters as input descriptors allow for the classification of
compounds that are active against biological targets that
belong to specific gene families versus a set of randomly se-
lected molecules.

Encouraged by these results, our aim in the study presented
here was to come up with fast and easily applicable in silico
filter tools that can capture essential features of kinase inhibi-
tor molecules, as opposed to druglike molecules that only hit
other target families. At the same time, these tools must be
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By using an in-house data set of small-molecule structures, en-
coded by Ghose–Crippen parameters, several machine learning
techniques were applied to distinguish between kinase inhibitors
and other molecules with no reported activity on any protein
kinase. All four approaches pursued—support-vector machines
(SVM), artificial neural networks (ANN), k nearest neighbor classi-
fication with GA-optimized feature selection (GA/kNN), and recur-
sive partitioning (RP)—proved capable of providing a reasonable
discrimination. Nevertheless, substantial differences in perform-

ance among the methods were observed. For all techniques
tested, the use of a consensus vote of the 13 different models de-
rived improved the quality of the predictions in terms of accura-
cy, precision, recall, and F1 value. Support-vector machines, fol-
lowed by the GA/kNN combination, outperformed the other tech-
niques when comparing the average of individual models. By
using the respective majority votes, the prediction of neural net-
works yielded the highest F1 value, followed by SVMs.
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promiscuous enough to cover qualities of inhibitors against
any protein kinase rather than a particular one. We have ap-
plied several machine-learning techniques, including support-
vector machines (SVM), artificial neural networks (ANN), k near-
est neighbor classification with GA-optimized feature selection
(GA/kNN), and recursive partitioning (RP), to a data set extract-
ed from our in-house library and examined how well they per-
form in distinguishing kinase inhibitors from non-kinase inhibi-
tors. These tools can be highly valuable whenever a large data
set of molecules is to be screened in order to select structures
that have a higher likelihood of being kinase inhibitors. Such
molecules are often desired/demanded in order to enrich in-
house target-specific libraries. Independent of whether these
molecules are to be purchased from vendors or to be synthe-
sized by combinatorial chemistry, an empirically derived in
silico tool can help to set priorities within the list of accessible
molecules.

Computational Methods

Data sets and descriptors

The data set used for training and testing the systems is com-
prised of both kinase-active and -inactive compounds from the
Schering library. A compound is labeled “active” if it shows
IC50�10 mm in at least one of eight in-house kinase assays
(three Ser/Thr kinases, five Tyr kinases). This activity threshold
was chosen since it represents an internal standard for starting
follow-up activities after high-throughput screening.

The entire pool of training compounds contains 565 mole-
cules classified as “actives” and 7194 as “inactives”. In addition,
an independent test set of 504 compounds (204 actives and
300 inactives) was put aside for validation purposes. Com-
pounds were randomly assigned to either the training set or
the test set.

A scaffold-based clustering of the entire data set that used
Bioreason’s ClassPharmer program[16] yielded 1112 unique scaf-
folds (642 clusters and 470 singletons). The active compounds
fall into 154 of these clusters while 37 of them are classified as
singletons. Each of the “active” clusters also contains at least
one inactive compound. Accordingly, the discrimination of
kinase-active and -inactive compounds cannot simply be ach-
ieved by a classification of the molecular scaffolds contained in
the data set.

In addition, the classifiers were tested on a data set of ten
kinase inhibitors taken from recent reviews[17, 18] (see Table 1).
None of these inhibitors exhibits significant 2D similarity to
any of the compounds in the training set. For all cases, the
Tanimoto-similarity coefficient to their respective nearest
neighbors in the training set is <0.7, based on the 166 public
MACCS keys.[19]

Due to their proven success in categorizing compounds and
their ease of calculation and interpretability, we utilized the
fragment-based descriptors developed by Ghose and Crip-
pen.[20] To encode the molecule structures, we employed a
SYBYL spl script, which counts the number of occurrences of
each of the 120 Ghose–Crippen fragments in a given molecule,

thus yielding a vector of 120 integers for each compound in
the data set. In order to avoid a bias in descriptor space and
numerical problems, we linearly scaled the descriptors to the
range [�1, + 1].

Classification and model validation

It is well known that some machine-learning methods have
difficulties handling unbalanced training sets, in which the
number of positive examples is substantially different from the
number of negatives (typically much smaller). Therefore, to
create balanced subsets from the whole data given, we em-
ployed an ensemble-based sampling procedure, similar to the
method proposed by Yan et al.[21] The overall architecture of
this ensemble approach is depicted in Figure 1.

As the ratio of inactives to actives in our set is about 13:1,
we generated thirteen different, individually balanced, training
sets. Each member of the training set ensemble is made up of
all 565 active compounds as well as the same number of in-
actives, randomly selected, with replacement from the entire
pool of 7194 inactives. Accordingly, on average every inactive
compound has the chance to contribute once to the model
training.

Models are derived from each training set independently
and used for class prediction of the compounds in the external
test set. In the Results and Discussion section, we report the
predictive power of each individual training set as well as the
results from a consensus majority vote of all members of the
ensemble. For example, if seven out of the 13 models classified
a test compound as active and the other six models voted for
inactivity, then the consensus majority vote would classify it as
being active.

There are many possible ways to assess the performance of
a classifier, with accuracy, precision, and recall probably being
the most widely used measures. Their definitions are given in
Equations (1)–(3), where tp = number of true positives, tn =

number of true negatives, fp = number of false positives, and
fn = number of false negatives.

accuracy ¼ tp þ tn
tp þ fp þ tn þ fn

ð1Þ

precision ¼ tp
tp þ fp

ð2Þ

recall ¼ tp
tp þ fn

ð3Þ

While accuracy is a simple and useful measure for the overall
classification performance, precision—that is, the ability to pre-
dict a particular class correctly—and recall—that is, the ability
to pick the true members of a class from a data set—can only
be reasonably interpreted in combination with each other. For
example, the compounds predicted to be active might in fact
all be true actives (precision = 1.0), while at the same time
many of the other true actives in the data set might be mis-
classified as inactives (low recall). On the other hand, a high
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recall, that is, a correct prediction for most of the true actives,
might be accompanied by a low precision, that is, many false
positives. To mitigate this problem, we calculated the harmonic
mean of precision and recall, also known as F1 measure or F-
score[22] [Eq. (4)] . Ideally, if both precision and recall are high,
this measure assumes values close to one.

F1 ¼ 2� recall� precision
recall þ precision

ð4Þ

As we are primarily interested in correctly classifying the
actives, only the above-mentioned success measures for this
class, along with the overall accuracy, are reported.

Table 1. Correct class predictions on the set of known kinase inhibitors.

Kinase
Inhibitor

Structure SVM ANN GA/kNN RP Kinase
Inhibitor

Structure SVM ANN GA/kNN RP

(Cmpd. No.) (Cmpd. No.)

flavopiridole true true true true GW9499 true true false false
1 6

roscovitine true true true true SB203580 true true true false
2 7

hymenialdisine true true false false NU2058 true true true true
3 8

staurosporine true true true true Gleevec true true true true
4 9

alsterpaullone true false true true BIRB796 false false false false
5 10

Number of correct predictions: 9/10 8/10 7/10 6/10
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Machine-learning methods

A detailed description of the classification algorithms em-
ployed in this study would go beyond the scope of this article.
We will therefore only briefly outline each method and the pa-
rameters used. For more details about the underlying mathe-
matics, we refer to the citations given in each of the following
subsections.

Support-vector machine (SVM)

SVMs provide a novel supervised machine-learning technique
initially proposed by Vapnik.[23] Since they have shown good
classification performance in various scenarios, there is a no-
ticeably growing interest in SVMs. Some recent chemistry-relat-
ed applications include the prediction of isoelectric points of
amino acids,[20, 24] aqueous solubility of organic molecules,[25]

discrimination of drugs and nondrugs,[26] and compound selec-
tion for specific biological assays.[27]

Moreover, Burbidge et al. conducted a comparative study on
an SAR data set in which SVM clearly outperformed neural
networks of different architecture as well as a decision tree
classifier.[28]

The basic concept behind SVMs is to first project the input
data vectors, which are composed of the respective descrip-
tors, to a high-dimensional feature space. This mapping is
accomplished by applying a so-called “kernel function”. The
second step of the algorithm involves detection of a hyper-
plane that optimally separates the individual classes of the
training set. Descriptor vectors of the test set are then mapped

to the same feature space, and the hyperplane can be used to
predict the class membership of these instances.

In this study, we employed LIBSVM, a freely available SVM
code, written by Chang and Lin.[29] As recommended by the
authors of the program, we applied the radial basis function
(RBF) as the kernel. With this setting, two parameters have to
be tuned: the penalty parameter, C, and the RBF parameter, c

(see ref. [29b] for a detailed discussion). We used tenfold cross
validation to find the optimal values for C and c for each of
the 13 training sets. These parameters are reported in Table 2.

Artificial neural net (ANN)

In this study, a standard feed-forward neural network was ap-
plied by using the ANN implementation of the TSAR software
package.[30] The network, which undergoes a supervised train-
ing by back-propagation of errors, is comprised of 120 input
neurons, that is, the Ghose–Crippen descriptors, five hidden
neurons, and one output neuron. All layers are completely
connected. For each training set, an individual network is
trained with default parameters. To avoid overtraining, 30 % of
the training set (default value of the ANN implementation in
TSAR) is randomly chosen and excluded from the training.

k nearest neighbors with genetic algorithm-based variable
selection (GA/kNN)

kNN classifiers provide another supervised-learning method for
subdividing a set of data points each of which are character-
ized by a vector of x descriptor values into different classes.

Figure 1. Architecture and workflow of the ensemble-based sampling and voting procedure.
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The kNN methods predict the classification of an unknown in-
stance based on the majority vote of its k nearest neighbors in
the given x-dimensional feature space. Usually, the Euclidian
distances from the given probe to all data points in the knowl-
edge base are calculated. The k closest points represent the
voters. In order to avoid over-fitting, the dimensionality of the
feature space is often reduced and only the most discrimina-
tory features are combined to determine the outcome of the
vote. Rather than just scaling all input features numerically to
the same range of values, the relative weights of the individual
descriptors can be determined by optimizing the accuracy of
the kNN prediction. Apart from these weights, the value of k,
which has to be an uneven number to avoid a tie, also exerts
an influence on the achieved prediction accuracy. A very ele-
gant way of tackling both of these optimization problems is to
link the kNN classifier to a genetic algorithm (GA).[31] The GA
varies the feature weights and the number of neighbors in an
evolution-like procedure, until a near-optimal solution for the
training set has been found. Here, we use an adaptation of the
GAUCSD software package linked to a kNN classifier developed
by Raymer.[32] The implemented fitness-function, which moni-
tors the evolutionary progress of the solutions is given in
Equation (5). It takes the overall prediction accuracy as well as
the balance between classes into account. Moreover, it aims at
reaching this goal with as few descriptors as possible by
awarding the masking (omission) of features:

Fitness ðweight-set, k valueÞ
¼ 20� ðincorrect predictions=total predictionsÞ

þ 1:0� ðunmasked features=total featuresÞ

þ 2:0� ðincorrect votes=total votesÞ

þ 5:0� ðdifference in error rate among classesÞ ð5Þ

The training of the GA/kNN requires a knowledge base from
which the voters are recruited and which is also used in the
subsequent testing phase, plus a set of probe data points the

classification of which is progressively optimized. Accordingly,
the training sets described above are further randomly subdi-
vided into two equally large and balanced sets, each compris-
ing 565 data points. By using the selection of features with
their respective weights as well as the k value determined
during the training phase, the data points of the test sets are
subsequently classified according to the vote of the knowl-
edge base, thus providing the unbiased prediction accuracies
as reported in Table 3.

Recursive partitioning (RP)

We used the FIRM (formal inference-based recursive modeling)
algorithm implemented in TSAR for recursive partitioning.[33]

FIRM is a type of decision-tree analysis in which a large data
set is progressively split into subgroups based on descriptor
values (predictor variables). For each split, a P value that indi-
cates the probability of a subgroup being homogeneous with
respect to the class membership is calculated. Subsequently,
the descriptor/subgroup combination that yields the lowest P
value is selected to split the data. This procedure is repeated
for each newly formed subgroup until no further split can be
justified. As a result, a decision tree is formed with the final
subgroups being the leaves of the tree. Typically only a subset
of input descriptors is used for splitting, and descriptors contri-
buting only little to the discrimination between classes are dis-
regarded. The depth, that is, the number of splits down the
tree in which they occur provides an indication of their impor-
tance. Thus, in contrast to SVM and ANN but similar to GA/
kNN, recursive partitioning provides a measure for the relative
discrimination potential of the input descriptors.

Prediction of the test set is straightforward. The splitting
rules developed for the training set are applied to the descrip-
tor vector of an unknown compound until it falls into a termi-
nal leaf. The predicted output value is given by the average
labels of the training set compounds in this leaf. As this study
deals with a two-class problem, with active compounds being
assigned a label of 1 and inactives being assigned a label of 0,

Table 2. Classification results on the test data by using SVM.

Model tp fn fp tn Accuracy Precision Recall F1 C c

1 176 28 30 270 0.89 0.85 0.86 0.86 1.25 �1.25
2 168 36 30 270 0.87 0.85 0.82 0.84 0.75 �1.50
3 175 29 36 264 0.87 0.83 0.86 0.84 2.50 �1.75
4 173 31 28 272 0.88 0.86 0.85 0.85 1.75 �2.00
5 181 23 31 269 0.89 0.85 0.89 0.87 2.00 �0.50
6 173 31 39 261 0.86 0.82 0.85 0.83 0.25 �1.50
7 180 24 31 269 0.89 0.85 0.88 0.87 1.25 �0.50
8 170 34 40 260 0.85 0.81 0.83 0.82 1.75 �2.00
9 168 36 30 270 0.87 0.85 0.82 0.84 0.50 �1.00
10 176 28 28 272 0.89 0.86 0.86 0.86 0.75 -0.50
11 181 23 30 270 0.90 0.86 0.89 0.87 2.50 �1.25
12 165 39 30 270 0.86 0.85 0.81 0.83 0.50 �1.50
13 171 33 34 266 0.87 0.83 0.84 0.84 0.50 �1.50
average 173.6 30.4 32.1 267.9 0.88 0.84 0.85 0.85
SD 5.2 5.2 3.9 3.9 0.01 0.02 0.03 0.02
majority vote 174 30 29 271 0.88 0.86 0.85 0.86
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the possible output of the decision tree is a real number in the
range [0,1] . For class prediction, we rounded the output value
to the nearest integer.

Results and Discussion

The major goals of this study
were first to test to what extent
machine-learning methods are
capable of learning and predict-
ing the “kinase inhibitor-like-
ness” of compounds, and
second to compare the perform-
ance of different classification
methods within this scenario.

As outlined in the Computa-
tional Methods section, we have
generated 13 training sets, each
balanced with regard to the
number of active kinase inhibi-
tors and inactive compounds.
Each set was used to derive a
cross-validated model, the pre-
dictive power of which was then
determined on an independent test set. Moreover, we em-
ployed an ensemble-based voting procedure in which the ma-
jority of the 13 models decide the class membership of the
test compounds.

In the following paragraphs, we discuss the classification re-
sults obtained for each of the four learning methods and com-
pare their performance characteristics.

Support-vector machine (SVM)

As can be deduced from Table 2, in general the SVM models
yield very high and balanced scores in all success measures. In
addition, the intermodel variations, that is, the standard devia-
tions from the average, are quite low compared to the other

learning methods (see below).
This means that SVM seems to
be only marginally sensitive to
the particular composition of
the training set. Ensemble-based
majority voting gives an—albeit
small—additional benefit over
the average of the individual
models. Due to the nature of
the SVM algorithm, no informa-
tion about the relative impor-
tance of individual descriptors
can be obtained. Taken togeth-
er, the SVM method provides
robust and reliable models irre-
spective of the success measure
and training set.

Artificial neural net (ANN)

Table 4 summarizes the performance of the ANN approach. In-
terestingly, although the scores of the individual models are
significantly lower than those obtained with SVM, the results

from the majority voting even slightly outperform SVM. This
finding is somewhat hard to rationalize, given the fact that
both SVM and ANN must be considered more or less as black-
box approaches. It appears that the predictions yielded by the
13 SVM models are more consistent than those of the ANN
models. This is also reflected in the higher standard-deviation
values of the latter.[34] Accordingly, the majority-voting proce-
dure benefits from this greater variety of “voters”.

k nearest neighbors with genetic algorithm-based variable
selection (GA/kNN)

Unlike the two previous methods, this machine-learning tech-
nique aims at a reduction of the given feature space, even at

Table 4. Classification results on the test data by using ANN.

Model tp fn fp tn Accuracy Precision Recall F1

1 171 33 48 252 0.84 0.78 0.84 0.81
2 167 37 64 236 0.80 0.72 0.82 0.7
3 167 37 66 234 0.80 0.72 0.82 0.76
4 168 36 59 241 0.81 0.74 0.82 0.78
5 159 45 53 247 0.80 0.75 0.78 0.76
6 165 39 60 240 0.80 0.73 0.81 0.77
7 176 28 80 220 0.79 0.69 0.86 0.77
8 172 32 77 223 0.78 0.69 0.84 0.76
9 165 39 66 234 0.79 0.71 0.81 0.76
10 175 29 81 219 0.78 0.68 0.86 0.76
11 179 25 75 225 0.80 0.70 0.88 0.78
12 171 33 73 227 0.79 0.70 0.84 0.76
13 176 28 57 243 0.83 0.76 0.86 0.81
average 170.1 33.9 66.1 233.9 0.80 0.72 0.83 0.77
SD 5.6 5.6 10.5 10.5 0.02 0.03 0.03 0.02
majority vote 180 24 35 265 0.88 0.84 0.88 0.86

Table 3. Classification results on the test data by using GA/kNN.

Model tp fn fp tn Accuracy Precision Recall F1 k No. of descriptors

1 170 34 43 257 0.85 0.80 0.83 0.81 5 41
2 168 36 51 249 0.83 0.77 0.82 0.79 3 39
3 164 40 37 263 0.85 0.82 0.80 0.81 5 33
4 169 35 41 259 0.85 0.81 0.83 0.82 7 36
5 164 40 42 258 0.84 0.80 0.80 0.80 5 38
6 176 28 53 247 0.84 0.77 0.86 0.81 3 44
7 169 35 42 258 0.85 0.80 0.83 0.81 5 38
8 178 26 61 239 0.83 0.75 0.87 0.80 1 39
9 173 31 52 248 0.84 0.77 0.85 0.81 1 44
10 172 32 52 248 0.83 0.77 0.84 0.80 7 36
11 163 41 40 260 0.84 0.80 0.80 0.80 5 34
12 167 37 43 257 0.84 0.80 0.82 0.81 7 40
13 174 30 48 252 0.85 0.78 0.85 0.82 5 46
average 169.8 34.2 46.5 253.5 0.84 0.79 0.83 0.81
SD 4.7 4.7 6.9 6.9 0.01 0.02 0.02 0.01
majority vote 172 32 35 265 0.87 0.83 0.84 0.84
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the cost of a small drop in pre-
diction accuracy. In fact, any
single model as depicted in
Table 3 uses less than half of the
descriptors available, with the
number of descriptors included
varying between 33 and 46. Al-
though within this range no cor-
relation between the number of
descriptors and F1 can be found,
the run that takes the largest
number of descriptors into ac-
count is actually the one yielding
the highest F1 value. Surprisingly
enough, the GA/kNN combina-
tion still ranks second best, after
SVM, when the average perform-
ances of the models are com-
pared. Although the knowledge
base is only half the size of the training sets used with the
other methods, the generally low standard deviations substan-
tiate the robustness of the prediction. However, when the ma-
jority votes are compared, GA/kNN falls behind both SVM and
ANN by approximately 2 %. Evidently, in this case, the ANN can
gain predictive power on the kNN quite significantly. This is
somewhat unexpected, since the majority vote procedure
allows for the reincorporation of descriptors that had been
omitted in the individual runs. Apparently, this still does not
lead to an improvement in terms of F1.

Taking a closer look at the descriptors selected in the indi-
vidual runs and their relative weights, a remarkable variation in
the descriptor patterns can be observed. Every single input de-
scriptor has been used in at least one of the 13 models, five
have only been used in one single model. Although a fraction
of the initial features is sufficient to derive an F1 value well in
the order of those obtained with the two methods incorporat-
ing all features (SVM: 0.85, ANN: 0.77$GA/kNN: 0.81), there
are various possible combinations of descriptors that lead to
approximately the same prediction accuracy. At the same time,
four descriptors can be identified that are used in every one of
the 13 runs and thus appear to play a prominent role. All of
them characterize polar atoms attached to or incorporated
into planar/aromatic structures. This is well in accordance with
the notion that kinase inhibitors in general depict an aromatic
system replacing the adenine part of ATP in the binding
pocket and forming at least one hydrogen bond to the hinge
region of the kinase. Not unexpectedly, the inspection of fea-
tures that are rarely selected or are assigned very low weights
suggests that their selection results from the limited size of
the data sets used for training. They should be considered arti-
facts rather than molecular features conveying kinase binding.

Recursive partitioning (RP)

This method, the results of which are summarized in Table 5,
by far performs the poorest of all. This is not surprising given
the fact that the predictions are based on the mean “activity”

of the training compounds in the final leaves of the decision
tree. Analysis of each of the 13 decision trees revealed that the
average number of descriptors characterizing a final leaf, that
is, the average “depth” of the tree, is only about five. This im-
plies that predictions on average rely on only about 6 % (5 out
of 120) of the Ghose–Crippen descriptors. On the other hand,
the strength of decision trees lies more in the information one
gets about the relative importance of the input descriptors
rather than on predictive power. Notably, the descriptors recur-
rently selected by the RP procedure are identical to the ones
that the GA/kNN identifies as prominent features.

A summary of the performances of the four different classifi-
cation methods is given in Figure 2. As discussed in the previ-
ous sections, the ensemble-based voting procedure in general
outperforms averaging over the individual models. The relative
gain of the voting procedure over averaging seems to corre-
late coarsely with the diversity of the individual training
models.

Based on the F1 success measure,[35] the following ranking
order can be deduced:
a) for average models:

SVM>GA/kNN>ANN>RP
b) for the majority vote of an ensemble of 13 models:

ANN>SVM>GA/kNN @ RP

The overlap of true predictions of the active compounds in
the test set is depicted in Table 6.

The overlap percentages are quite high and correlate well
with the overall performance rates of the different machine
learning methods (Tables 2–5). This implies that there is no

Table 5. Classification results on the test data by using RP.

Model tp fn fp tn Accuracy Precision Recall F1

1 146 58 64 236 0.76 0.70 0.72 0.71
2 147 57 42 258 0.80 0.78 0.72 0.75
3 147 57 64 236 0.76 0.70 0.72 0.71
4 143 61 38 262 0.80 0.79 0.70 0.74
5 135 69 31 269 0.80 0.81 0.66 0.73
6 145 59 50 250 0.78 0.74 0.71 0.73
7 150 54 60 240 0.77 0.71 0.74 0.73
8 139 65 40 260 0.79 0.78 0.68 0.73
9 142 62 42 258 0.79 0.77 0.70 0.73
10 152 52 59 241 0.78 0.72 0.75 0.73
11 134 70 60 240 0.74 0.69 0.66 0.67
12 150 54 45 255 0.80 0.77 0.74 0.75
13 152 52 39 261 0.82 0.80 0.75 0.77
average 144.8 59.2 48.8 251.2 0.79 0.75 0.71 0.73
SD 6.0 6.0 11.3 11.3 0.02 0.04 0.03 0.02
majority vote 143 61 27 273 0.83 0.84 0.70 0.77

Table 6. Overlap [%] of correctly classified active compounds in the test set

SVM ANN GA/kNN

ANN 92.4
GA/kNN 88.3 89.2
RP 77.1 74.6 77.0

564 � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chembiochem.org ChemBioChem 2005, 6, 558 – 566

H. Briem et al.

www.chembiochem.org


pronounced inter-relationship between a particular classifier
and a certain class of inhibitors. Consequently, all the methods,
in combination with Ghose–Crippen descriptors, appear to be
suited to generalization, that is, to correctly predict the kinase
likeness of different structural classes of inhibitors.

In addition to the validation by statistical measures, we also
tested the ability of our models to perform scaffold hopping.
The approaches complement each other. Therefore, we com-
piled a set of known protein kinase inhibitors. As described in

the Computational Methods, none of these inhibitors showed
significant 2D similarity to any compound in the training set.
Thus, a correct classification cannot be attributed to the recog-
nition of the main scaffold alone, but reveals the potential for
detecting truly novel inhibitors.

As depicted in Table 1, the rank order of prediction results
for this diverse data set resembles that of our test set of in-
house compounds, with SVM performing best and RP perform-
ing worst—although, with only ten compounds in the data
set, no statistical significance can be expected.

Remarkably, Gleevec, which is known to exhibit a distinct
binding mode that only partially overlaps with that of most
other kinase inhibitors,[36] is correctly predicted by all four clas-
sifiers. On the other hand, the p38 MAP kinase inhibitor
BIRB796, which shows a binding mode very similar to Glee-
vec,[37] is misclassified by all methods. This example points to a
clear limitation in employing 2D fragment descriptors for clas-
sification. As long as the majority of fragments in a test com-
pound have not been part of active compounds in the training
set—as seems to be the case for BIRB796—even the most so-
phisticated classifier must fail. In future work, it might be inter-
esting to feed the machine-learning methods with descriptors
derived from 3D docking modes or pharmacophore models.

Conclusion

All four machine learning techniques employed in this study—
SVM, ANN, GA/kNN, and RP—proved capable of providing a
reasonable discrimination between kinase inhibitors and non-
inhibitors. Average F1 values above 0.8 could be obtained for
both SVM-based models and GA/kNN-based models; this sug-
gests that these methods are well applicable for compound
selection in practice.

Using the majority vote of the 13 models derived improved
the prediction quality for all four methods, but most pronoun-
cedly for the neural networks. In fact, the ANN majority vote
outperformed all other predictions in terms of recall (0.88) and
F1 (0.86). The majority vote of the SVM models yielded the
highest precision (0.86) and as good an accuracy (0.88) as the
ANN ensemble. Although the different data sets and molecular
descriptors used limit the comparability of results, these fig-
ures are in the same range as the prediction accuracies of
79 % that Manallack et al.[15] obtained for the discrimination of
kinase inhibitors and nonkinase inhibitors.

If information on the underlying discriminatory features is
not desired or not required, and the prediction machine is
only to be used as a black box, either ANN or SVM can be
used to derive highly predictive models. The difference in per-
formance between the two methods is minor if an ensemble
vote of individual models is used. While the improvement in
performance is relatively small for SVM, it is large for ANN.
Thus, a single SVM-based model may well be used. When
choosing ANN, however, the derivation of an ensemble of
models for majority voting is advisable.

If a good prediction along with some information on the
discriminatory features is desired, the GA/kNN combination
appears the method of choice. This approach also offers ad-

Figure 2. Summary of the results of the machine-learning methods employed
on the independent test set. The best-performing model for each success
measure is depicted in dark gray.
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vantages if the size of the data set and the descriptor space
suggest a reduction of feature space to avoid overtraining.

Due to the enormous reduction of feature space in RP, it is
not surprising that RP cannot quite compete with the other
three methods in the scenario given here. While this method
should not preferentially be used to screen large compound
sets for feasible kinase inhibitors, it provides a very valuable
and extremely fast approach toward the identification of dis-
criminatory features in a given data set. Moreover, it gives a
rough first estimate as to what order of prediction accuracy
might be obtained with more sophisticated methods. In addi-
tion, biases in a given data set that enable high prediction
accuracy but only seemingly resolve the given classification
problem can quickly be identified with this method.

Our results are in close agreement with other comparative
studies (Byvatov et al. ,[26] Burbidge et al.[28]), featuring SVM as a
fast and reliable machine-learning method, which is at least
comparable in performance to neural networks and other clas-
sification approaches.

Concerning the choice of molecular descriptors, we believe
that the balance between a general and a detailed level of
abstraction provided by the set of Ghose–Crippen fragments
makes them well-suited for the classification of small mole-
cules with respect to their potential for inhibiting particular
target family classes.
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